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COMMENT 

Singular solution in a damped double sinh-Gordon system 

Bishwajyoti Dey 
Institute of Physics, Bhubaneswar-751005, India 

Received 9 July 1985 

Abstract. The singular travelling wave solution of a linearly damped double sinh-Gordon 
system has been obtained. It is shown that the solution is linearly stable. 

The double sinh-Gordon (DshG) system is characterised by the potential (Behera and 
Khare 1981) 

V(q)=(b2/8)  cosh4q-b cosh2Q-(b2/8). (1) 

V(q) has minima at 

q = O  f o r b > 2  

and 

cosh 2q = 2/ b foro< b<2.  (26) 

For the latter condition there are two degenerate minima. Behera and Khare (1981) 
have obtained a kink solution for this model. More recently (Joseph and Baby 1983) 
two more new classes of solitary wave solutions of the DshG system have been obtained. 
In this comment, following Magyari (1984b) we study analytically the linearly damped 
DshG system. We find that, contrary to the damped double sine-Gordon (DSG) system 
(Magyari 1984b) and other damped multistable systems (Magyari 1984a), the damped 
DshG system may not have a kink solution. Instead it has a singular travelling wave 
solution which diverges at (( = x - u t )  + 0, but tends to zero at (+ fa. Linear stability 
analysis around this solution shows that the solution remains stable in the asymptotic 
limit. 

Let us consider a model of a linear chain of particles described by the classical 
Hamiltonian 

H = C [ 3 ~ f  + t k ( q i + l -  + v(qi)I (3) 
i 

where m denotes particle mass, k is the strength of the harmonic coupling between 
neighbouring particles, qi( t )  is the displacement of the ith particle at time t and V( vi) 
the on-site potential represented by (1). We also assume that each particle is subjected 
to a damping force proportional to its velocity. In this way we obtain for the displace- 
ment field the equation of motion 

(4) m+ + 7Q - k12q" = -d V/dp 

where 7 is the damping coefficient (7 > 0) and the prime denotes alax. 
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In the absence of dissipation (7 = 0), the kink and solitary wave solutions of the 
DshG system have been obtained by Behera and Khare (1981) and Joseph and Baby 
(1983) respectively. Magyari (1984a, b) has shown that, for damped multistable 
systems, there exists a further localised, linearly stable excitation which is a uniformly 
driven domain wall (DW). Here we find that for the multistable DshG system such a 
DW solution may not exist, but there is a singular travelling wave solution, which is 
linearly stable in the limit ,$+ *a. It is surprising that this particular multistable system 
(DshG) may not support a DW solution in the presence of damping. 

The solution under consideration is a travellitlg wave governed by the equation 

Wocp"+gvcp'-(b~2) sinh4cp+26 sinh2cp=O ( 5 )  
with WO = kI2 - mu2 > 0. There exists a solution to this equation satisfying the boundary 
condition 

cp(*a) = 0 cp '( *as) = 0. (6) 
It is given by 

coth 2cp = cosh(2,$/6) 

with 
(7) 

6 = 7v/2b (8) 

U = c( 1 + ~ ~ / 8 m ) - ' ' ~  (9) 
where c is the characteristic velocity of the system. 

This solution shows that the DW solution may not exist for 7 f 0, but instead there 
exists a singular travelling solution. Such a type of singular solution is not uncommon 
in non-linear differential equations (Jaworski 1984). 

It can be easily proved that ( 5 )  has no other finite energy solution subject to the 
boundary condition (6). This is because, for a potential with doubly degenerate minima 
(as in ( l)) ,  the finite energy solution should move from one minimum of the potential 
at 5 = -a to the adjacent minimum of the potential at 5 = +as (Coleman 1977). The 
boundary condition (6) obviously does not satisfy this condition (2b). 

Let us now examine the linear stability and the excitation of the solution (7). For 
this, we first transform (4) to the comoving frame of the travelling wave solution (7) ,  
and then linearise the transformed equation around the solution according to the ansatz 

and 

cp = d 5 )  + e(5) exp(-iwt). 
The transformed equation becomes 

e''( 5) - (2imw7-I - I)(  TU/ WO) e'(,$) + { mu2 + iTw - v"[ cp( [)I) w;b( 5) = o (11) 
where 

c2 = kI2/ m (12) 

V'[cp(,$)] = 2b[ b +2b  cosech2(2,$/6) - 2 coth(2[/6)]. 

and 

(13) 
It can be easily checked that (11) has got two solutions corresponding to the 

frequencies w ,  = 0 and w2 = -iT/m, the solutions for which are given by 

e , ( [ )  = cosech(2[/6) for w = O  (14a) 
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and 
e,( 5 )  = exp(45/ b8) cosech(26/ 8) for w = -iq/ m. (14b) 

Both of these solutions diverge at 5 + 0. Out of these two solutions only e,( [ )  + 0 as 
[+ &CO and e,(co) + CO for b e 2. 

Now we show that the w = 0 mode is the lowest energy mode. We transform (11) 
by the ansatz (Magyari 1984b) 

e ( & )  = e x p ( - f m w  
where 

a = -(4/ b8)(2imwq-' - 1) 

to the more familiar Schrodinger-type eigenvalue problem 

+ " + ( E -  W)+=O (17) 

where 

E = - (4 /8Z)- (4 /bZ82)+k12W~2(mwZ+iqw)  (18) 

W = (8/S2) cosech2(2&/S) - (8/ bS2) coth(26/6). (19) 

Now the third term on the RHS of (18) is always positive or equal to zero (the imaginary 
part of w, if any, has to be negative, otherwise (10) will blow up for t + CO). So the 
lowest value of E is given by 

E = -(4/S2) - (4/ b2S2) (20) 

which corresponds to either w = 0 or w = -iq/m. It can be easily checked that, for 
the lowest eigenvalue (equation (20)), the eigenfunction is given by 

+(t) = exp(26/bS) cosech(26/6). (21) 

The eigenmodes corresponding to the frequency w = 0 and w = -iq/m can be obtained 
by substituting (21) into ( 1 9 ,  using (16), and they are the same as given in (14a) and 
(14b) respectively. Thus the w = 0 mode corresponds to the lowest energy. 

Thus the solution (7) is linearly stable in the asymptotic limit, as there exists a 
mode e,( 6 )  with frequency w = 0, such that e,( *CO) + 0. The mode e,( 6 )  corresponding 
to the frequency w = -iq/m (the inertia mode as found by Magyari (1984a, b) for the 
damped multistable systems) is not allowed here, as it diverges in the asymptotic limit. 

Thus we conclude that, unlike other damped multistable systems, the damped DshG 
system may not have a DW solution. Instead it has a singular travelling wave solution. 
The solution is linearly stable, as the excitation spectrum has got a zero frequency 
mode which goes to zero in the asymptotic limit. The localised smooth inertia mode, 
as found in the other damped multistable systems, diverges in the asymptotic limit for 
this system and hence is not allowed. Finally we say that this type of singular solution 
lacks direct physical interpretation (Jaworski 1984). However this solution is important 
analytically because, for want of a finite energy solution with proper boundary condition 
(at present), this result shows that, for any damped multistable system, the kink solution 
may not always remain stable. 

The author would like to thank S N Behera and A Khare for useful discussions. 
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